

Delve: Deep Live Visualization and Evaluation [image: logo]

[image: PyPI version] [https://badge.fury.io/py/delve] [image: Tests] [https://github.com/delve-team/delve/actions/workflows/tests.yaml] [image: codecov.io] [https://codecov.io/github/delve-team/delve/?branch=master] [image: License: MIT] [https://opensource.org/licenses/MIT] [image: DOI] [https://zenodo.org/badge/latestdoi/136951823]

Delve is a Python package for analyzing the inference dynamics of your model.

[image: playground]
Use Delve if you need a lightweight PyTorch extension that:

	Gives you insight into the inference dynamics of your architecture

	Allows you to optimize and adjust neural networks models to your dataset without much trial and error

	Allows you to analyze the eigenspaces your data at different stages of inference

	Provides you basic tooling for experiment logging

Motivation

Designing a deep neural network is a trial and error heavy process that
mostly revolves around comparing performance metrics of different runs.
One of the key issues with this development process is that the results
of metrics not really propagate back easily to concrete design
improvements. Delve provides you with spectral analysis tools that allow
you to investigate the inference dynamic evolving in the model while
training. This allows you to spot underutilized and unused layers.
Mismatches between object size and neural architecture among other
inefficiencies. These observations can be propagated back directly to
design changes in the architecture even before the model has fully
converged, allowing for a quicker and more guided design process.

This work is closely related to Maithra Raghu (Google Brain) et al’s work on SVCCA:

	“Maithra Raghu on the differences between wide and deep networks”, 2020 [YouTube] [https://youtu.be/6uPop547u_E?t=970]

	“SVCCA:Singular Vector Canonical Correlation Analysis for Deep Learning and Interpretability”, 2017 [arXiv] [https://arxiv.org/abs/1706.05806]

Installation

pip install delve

Using Layer Saturation to improve model performance

The saturation metric is the core feature of delve. By default
saturation is a value between 0 and 1.0 computed for any convolutional,
lstm or dense layer in the network. The saturation describes the
percentage of eigendirections required for explaining 99% of the
variance. Simply speaking, it tells you how much your data is “filling
up” the individual layers inside your model.

In the image below you can see how saturation portraits inefficiencies
in your neural network. The depicted model is ResNet18 trained on 32
pixel images, which is way to small for a model with a receptive field
exceeding 400 pixels in the final layers.

[image: resnet.PNG]
To visualize what this poorly chosen input resolution does to the
inference, we trained logistic regressions on the output of every layer
to solve the same task as the model. You can clearly see that only the
first half of the model (at best) is improving the intermedia solutions
of our logistic regression “probes”. The layers following this are
contributing nothing to the quality of the prediction! You also see that
saturation is extremly low for this layers!

We call this a tail and it can be removed by either increasing the
input resolution or (which is more economical) reducing the receptive
field size to match the object size of your dataset.

[image: resnetBetter.PNG]

We can do this by removing the first two downsampling layers, which
quarters the growth of the receptive field of your network, which
reduced not only the number of parameters but also makes more use of the
available parameters, by making more layers contribute effectivly!

For more details check our publication on this topics - Spectral
Analysis of Latent Representations [https://arxiv.org/abs/1907.08589]
- Feature Space Saturation during
Training [https://arxiv.org/abs/2006.08679] - (Input) Size Matters
for CNN
Classifiers [https://link.springer.com/chapter/10.1007/978-3-030-86340-1_11]
- Should you go deeper? Optimizing Convolutional Neural Networks
without training [https://arxiv.org/abs/2106.12307] - Go with the
Flow: the distribution of information processing in multi-path networks
(soon)

Demo

import torch
from delve import SaturationTracker
from torch.cuda import is_available
from torch.nn import CrossEntropyLoss
from torchvision.datasets import CIFAR10
from torchvision.transforms import ToTensor, Compose
from torch.utils.data.dataloader import DataLoader
from torch.optim import Adam
from torchvision.models.vgg import vgg16

setup compute device
from tqdm import tqdm

if __name__ == "__main__":

 device = "cuda:0" if is_available() else "cpu"

 # Get some data
 train_data = CIFAR10(root="./tmp", train=True,
 download=True, transform=Compose([ToTensor()]))
 test_data = CIFAR10(root="./tmp", train=False, download=True, transform=Compose([ToTensor()]))

 train_loader = DataLoader(train_data, batch_size=1024,
 shuffle=True, num_workers=6,
 pin_memory=True)
 test_loader = DataLoader(test_data, batch_size=1024,
 shuffle=False, num_workers=6,
 pin_memory=True)

 # instantiate model
 model = vgg16(num_classes=10).to(device)

 # instantiate optimizer and loss
 optimizer = Adam(params=model.parameters())
 criterion = CrossEntropyLoss().to(device)

 # initialize delve
 tracker = SaturationTracker("my_experiment", save_to="plotcsv", modules=model, device=device)

 # begin training
 for epoch in range(10):
 model.train()
 for (images, labels) in tqdm(train_loader):
 images, labels = images.to(device), labels.to(device)
 prediction = model(images)
 optimizer.zero_grad(set_to_none=True)
 with torch.cuda.amp.autocast():
 outputs = model(images)
 _, predicted = torch.max(outputs.data, 1)

 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()

 total = 0
 test_loss = 0
 correct = 0
 model.eval()
 for (images, labels) in tqdm(test_loader):
 images, labels = images.to(device), labels.to(device)
 outputs = model(images)
 loss = criterion(outputs, labels)
 _, predicted = torch.max(outputs.data, 1)

 total += labels.size(0)
 correct += torch.sum((predicted == labels)).item()
 test_loss += loss.item()

 # add some additional metrics we want to keep track of
 tracker.add_scalar("accuracy", correct / total)
 tracker.add_scalar("loss", test_loss / total)

 # add saturation to the mix
 tracker.add_saturations()

 # close the tracker to finish training
 tracker.close()

Supported Layers

	Dense/Linear

	LSTM

	Convolutional

Citation

If you use Delve in your publication, please cite:

@software{delve,
author = {Justin Shenk and
 Mats L. Richter and
 Wolf Byttner and
 Michał Marcinkiewicz},
title = {delve-team/delve: Latest},
month = aug,
year = 2021,
publisher = {Zenodo},
version = {v0.1.50},
doi = {10.5281/zenodo.5233859},
url = {https://doi.org/10.5281/zenodo.5233859}
}

Why this name, Delve?

delve (verb):

	reach inside a receptacle and search for something

	to carry on intensive and thorough research for data, information, or
the like

Getting Started

	Installation
	Installing Delve

	Usage

	Saturation

	Usage

	Academic Gallery

	Example Plots
	Plotting

	Logging

	Reference to All Attributes and Methods
	SaturationTracker

	API Pages

	Bugs and Support
	Bugs

	Community

	Contributing to Delve
	Overview

	1) Forking the Delve repository using Git

	2) Creating a development environment

	3) Installing Dependencies

	4) Making a development build

	5) Making changes and writing tests

	6) Updating the Documentation

	7) Submitting a Pull Request

Indices and tables

	Index

	Module Index

	Search Page

Installation

Installing Delve

Delve require Python 3.6+ to be installed.

To install via pip:

pip install delve

To install the latest development version, clone the GitHub repository and use the setup script:

git clone https://github.com/delve-team/delve.git
cd delve
pip install .

Usage

Instantiate the SaturationTracker class where you define your PyTorch training loop, as in the example:

from torch import nn
from delve import SaturationTracker

...

model = nn.ModuleDict({
 'conv1': nn.Conv2d(1, 8, 3, padding=1),
 'linear1': nn.Linear(3, 1),
})

layers = [model.conv1, model.linear1]
stats = SaturationTracker('regression/h{}'.format(h),
 save_to="plotcsv",
 modules=layers,
 stats=["lsat"]
)

...

for _ in range(10):
 y_pred = model(x)
 loss = loss_fn(y_pred, y)
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()

 stats.add_saturations()

stats.close()

This will hook into the layers in layers and log the statistics, in this case lsat (layer saturation). It will save images to regression.

Saturation

Saturation is a metric used for identifying the intrinsic dimensionality of
features in a layer.

A visualization of how saturation changes over training and can be used to optimize network topology is provided at https://github.com/justinshenk/playground:

[image: _images/saturation_demo.gif]
Covariance matrix of features is computed online:

\[Q(Z_l, Z_l) = \frac{\sum^{B}_{b=0}A_{l,b}^T A_{l,b}}{n} -(\bar{A}_l \bigotimes \bar{A}_l)\]

for \(B\) batches of layer output matrix \(A_l\) and \(n\) number of samples.

Note

For more information about how saturation is computed, read “Feature Space Saturation during Training” [https://arxiv.org/abs/2006.08679].

Gallery

A gallery of examples

[image:]
Extract layer saturation

 Extract layer saturation

Download all examples in Python source code: gallery_python.zip

Download all examples in Jupyter notebooks: gallery_jupyter.zip

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Go to the end
to download the full example code

Extract layer saturation

Extract layer saturation with Delve.

import torch
from tqdm import trange

from delve import SaturationTracker

class TwoLayerNet(torch.nn.Module):
 def __init__(self, D_in, H, D_out):
 super(TwoLayerNet, self).__init__()
 self.linear1 = torch.nn.Linear(D_in, H)
 self.linear2 = torch.nn.Linear(H, D_out)

 def forward(self, x):
 h_relu = self.linear1(x).clamp(min=0)
 y_pred = self.linear2(h_relu)
 return y_pred

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.manual_seed(1)

for h in [3, 32]:
 # N is batch size; D_in is input dimension;
 # H is hidden dimension; D_out is output dimension.
 N, D_in, H, D_out = 64, 1000, h, 10

 # Create random Tensors to hold inputs and outputs
 x = torch.randn(N, D_in)
 y = torch.randn(N, D_out)
 x_test = torch.randn(N, D_in)
 y_test = torch.randn(N, D_out)

 # You can watch specific layers by handing them to delve as a list.
 # Also, you can hand over the entire Module-object to delve and let delve search for recordable layers.
 model = TwoLayerNet(D_in, H, D_out)

 x, y, model = x.to(device), y.to(device), model.to(device)
 x_test, y_test = x_test.to(device), y_test.to(device)

 layers = [model.linear1, model.linear2]
 stats = SaturationTracker('regression/h{}'.format(h),
 save_to="plotcsv",
 modules=layers,
 device=device,
 stats=["lsat", "lsat_eval"])

 loss_fn = torch.nn.MSELoss(reduction='sum')
 optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.9)
 steps_iter = trange(2000, desc='steps', leave=True, position=0)
 steps_iter.write("{:^80}".format(
 "Regression - TwoLayerNet - Hidden layer size {}".format(h)))
 for step in steps_iter:
 # training step
 model.train()
 y_pred = model(x)
 loss = loss_fn(y_pred, y)
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()

 # test step
 model.eval()
 y_pred = model(x_test)
 loss_test = loss_fn(y_pred, y_test)

 # update statistics
 steps_iter.set_description('loss=%g' % loss.item())
 stats.add_scalar("train-loss", loss.item())
 stats.add_scalar("test-loss", loss_test.item())

 stats.add_saturations()
 steps_iter.write('\n')
 stats.close()
 steps_iter.close()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: extract-saturation.py

Download Jupyter notebook: extract-saturation.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Academic Gallery

Delve has been used in several papers:

[image: _images/border_ResNet18_Cifar10_32.png]

ResNet18 trained on Cifar10 for 30 epochs using the adam optimizer and a batch size of 64. Image from “Should You Go Deeper? Optimizing Convolutional Neural Networks without training” [https://arxiv.org/abs/2106.12307].

[image: _images/border_ResNet34_Cifar10_32.png]

ResNet34 trained on Cifar10 for 30 epochs using the adam optimizer. Image from “Should You Go Deeper? Optimizing Convolutional Neural Networks without training” [https://arxiv.org/abs/2106.12307].

[image: _images/DenseNet18_Cifar10_32.png]

DenseNet18 trained on Food101 for 90 epochs using the stochastic gradient decent optimizer and a batch size of 128. Image from “Feature Space Saturation During Training” [https://arxiv.org/abs/2006.08679].

[image: _images/vgg16_resolution_sat.png]

VGG16 trained on 3 different resolutions for 30 epochs using the Adam-optimizer and a batch size of 32. You can see the shift in the inference process by observing the shift in high saturation values. Image from “(Input) Size Matters for Convolutional Neural Network Classifiers” [https://www.springerprofessional.de/en/input-size-matters-for-cnn-classifiers/19652392].

Examples

Delve allows the user to create plots and log records in various formats.

Plotting

Delve allows plotting results every epoch using save_to="csvplot", which will create automated plots from the metrics
recorded in the stats argument. The plots depict the layers generally in order of the forward pass.

[image: _images/VGG16-Cifar10-r32-bs256-e90idim_epoch_88.png]

Automatically generated plot of intrinsic dimensionality computed on the training set of Cifar10 on VGG16 at the 88th epoch of a 90 epoch of training.

[image: _images/VGG16-Cifar10-r32-bs256-e90lsat_epoch_88.png]

Automatically generated plot of saturation computed on the training set of Cifar10 on VGG16 at the 88th epoch of a 90 epoch training.

Logging

Delve logs results with the logging package and shows progress with tqdm.

[image: _images/logging.JPG]

A simple example generated from a two-layer network trained on randomly generated data is provided in sphx_glr_gallery.

Reference

SaturationTracker

SaturationTracker provides a hook for PyTorch and extracts metrics during model training.

	
class delve.SaturationTracker(savefile: str, save_to: ~typing.Union[str, ~delve.writers.AbstractWriter], modules: ~torch.nn.modules.module.Module, layer_filter: ~typing.Callable[[~typing.Dict[str, ~torch.nn.modules.module.Module]], ~typing.Dict[str, ~torch.nn.modules.module.Module]] = <function SaturationTracker.<lambda>>, writer_args: ~typing.Optional[~typing.Dict[str, ~typing.Any]] = None, log_interval=1, max_samples=None, stats: list = ['lsat'], layerwise_sat: bool = True, reset_covariance: bool = True, average_sat: bool = False, ignore_layer_names: ~typing.List[str] = [], include_conv: bool = True, conv_method: str = 'channelwise', timeseries_method: str = 'last_timestep', sat_threshold: str = 0.99, nosave=False, verbose: bool = False, device='cuda:0', initial_epoch: int = 0, interpolation_strategy: ~typing.Optional[str] = None, interpolation_downsampling: int = 32)

	
	Takes PyTorch module and records layer saturation,
	intrinsic dimensionality and other scalars.

	Parameters:

	
	savefile (str [https://docs.python.org/3/library/stdtypes.html#str]) – destination for summaries

	(str (save_to) –
	Specify one or multiple save strategies.
	You can use preimplemented save strategies or inherit from
the AbstractWriter in order to implement your
own preferred saving strategy.

	pre-existing saving strategies are:
	
	csvstores all stats in a csv-file with one
	row for each epoch.

	plotproduces plots from intrinsic dimensionality
	and / or layer saturation

tensorboard : saves all stats to tensorboard
print : print all metrics on console

as soon as they are logged

	npycreates a folder-structure with npy-files
	containing the logged values. This is the only
save strategy that can save the
full covariance matrix.
This strategy is useful if you want to reproduce
intrinsic dimensionality and saturation values
with other thresholds without re-evaluating
model checkpoints.

	List[Union[str –
	Specify one or multiple save strategies.
	You can use preimplemented save strategies or inherit from
the AbstractWriter in order to implement your
own preferred saving strategy.

	pre-existing saving strategies are:
	
	csvstores all stats in a csv-file with one
	row for each epoch.

	plotproduces plots from intrinsic dimensionality
	and / or layer saturation

tensorboard : saves all stats to tensorboard
print : print all metrics on console

as soon as they are logged

	npycreates a folder-structure with npy-files
	containing the logged values. This is the only
save strategy that can save the
full covariance matrix.
This strategy is useful if you want to reproduce
intrinsic dimensionality and saturation values
with other thresholds without re-evaluating
model checkpoints.

	delve.writers.AbstractWriter]] –
	Specify one or multiple save strategies.
	You can use preimplemented save strategies or inherit from
the AbstractWriter in order to implement your
own preferred saving strategy.

	pre-existing saving strategies are:
	
	csvstores all stats in a csv-file with one
	row for each epoch.

	plotproduces plots from intrinsic dimensionality
	and / or layer saturation

tensorboard : saves all stats to tensorboard
print : print all metrics on console

as soon as they are logged

	npycreates a folder-structure with npy-files
	containing the logged values. This is the only
save strategy that can save the
full covariance matrix.
This strategy is useful if you want to reproduce
intrinsic dimensionality and saturation values
with other thresholds without re-evaluating
model checkpoints.

	modules (torch modules or list [https://docs.python.org/3/library/stdtypes.html#list] of modules) – layer-containing object.
Per default, only Conv2D,
Linear and LSTM-Cells
are recorded

	layer_filter (func) – A filter function that is used to avoid layers from being tracked.
This is function receiving a dictionary as input and returning
it with undesired entries removed. Default: Identity function.
The dictionary contains string keys mapping to torch.nn.Module objects.

	writers_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – contains additional arguments passed over to the
writers. This is only used, when a writer is
initialized through a string-key.

	log_interval (int [https://docs.python.org/3/library/functions.html#int]) – distances between two batches used for updating the
covariance matrix. Default value is 1, which means
that all data is used for computing
intrinsic dimensionality and saturation.
Increasing the log interval is usefull on very
large datasets to reduce numeric instability.

	max_samples (int [https://docs.python.org/3/library/functions.html#int]) – (optional) the covariance matrix in each layer
will halt updating itself when max_samples
are reached. Usecase is similar to log-interval,
when datasets are very large.

	stats (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – list of stats to compute

	supported stats are:
	idim : intrinsic dimensionality
lsat : layer saturation (intrinsic dimensionality divided by feature space dimensionality)
cov : the covariance-matrix (only saveable using the ‘npy’ save strategy)
det : the determinant of the covariance matrix (also known as generalized variance)
trc : the trace of the covariance matrix, generally a more useful metric than det for determining

the total variance of the data than the determinant.
However note that this does not take the correlation between
features into account. On the other hand, in most cases the determinent will be zero, since
there will be very strongly correlated features, so trace might be the better option.

dtrc : the trace of the diagonalmatrix, another way of measuring the dispersion of the data.
lsat : layer saturation (intrinsic dimensionality

divided by feature space dimensionality)

embed : samples embedded in the eigenspace of dimension 2

	layerwise_sat (bool [https://docs.python.org/3/library/functions.html#bool]) – whether or not to include
layerwise saturation when saving

	reset_covariance (bool [https://docs.python.org/3/library/functions.html#bool]) – True by default, resets the covariance
every time the stats are computed. Disabling
this option will strongly bias covariance
since the gradient will influence the model.
We recommend computing saturation at the
end of training and testing.

	include_conv – setting to False includes only linear layers

	conv_method (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	how to subsample convolutional layers. Default is
	channelwise, which means that the each position of
the filter tensor is considered a datapoint,
effectivly yielding a data matrix of shape
(height*width*batch_size, num_filters)

	supported methods are:
	
	channelwisetreats every depth vector of the tensor as a
	datapoint, effectivly reshaping the data tensor
from shape (batch_size, height, width, channel)
into (batch_size*height*width, channel).

	meanapplies global average pooling on
	each feature map

	maxapplies global max pooling on
	each feature map

	medianapplies global median pooling on
	each feature map

	flattenflattenes the entire feature map to a vector,
	reshaping the data tensor into a data matrix
of shape (batch_size, height*width*channel).
This strategy for dealing with convolutions is
extremly memory intensive and will likely cause
memory and performance problems for any
non toy-problem

	timeseries_method (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	how to subsample timeseries methods. Default
	is last_timestep.

	supported methods are:
	timestepwise : stacks each sample timestep-by-timestep
last_timestep : selects the last timestep’s output

	nosave (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, disables saving artifacts (images), default is False

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – print saturation for every layer during training

	sat_threshold (float [https://docs.python.org/3/library/functions.html#float]) – threshold used to determine the number of
eigendirections belonging to the latent space.
In effect, this is the threshold determining
the the intrinsic dimensionality. Default value
is 0.99 (99% of the explained variance), which
is a compromise between a good and interpretable
approximation. From experience the threshold
should be between 0.97 and 0.9995 for
meaningfull results.

	verbose – Change verbosity level (default is 0)

	device (str [https://docs.python.org/3/library/stdtypes.html#str]) – Device to do the computations on.
Default is cuda:0. Generally it is recommended
to do the computations
on the gpu in order to get maximum performance.
Using the cpu is generally slower but it lets
delve use regular RAM instead of the generally
more limited VRAM of the GPU.
Not having delve run on the same device as the
network causes slight performance decrease due
to copying memory between devices during each
forward pass.
Delve can handle models distributed on multiple
GPUs, however delve itself will always
run on a single device.

	initial_epoch (int [https://docs.python.org/3/library/functions.html#int]) – The initial epoch to start with. Default is 0,
which corresponds to a new run.
If initial_epoch != 0 the writers will
look for save states that they can resume.
If set to zero, all existing states
will be overwritten. If set to a lower epoch
than actually recorded the behavior of the
writers is undefined and may result in crashes,
loss of data or corrupted data.

	interpolation_strategy (str [https://docs.python.org/3/library/stdtypes.html#str]) – Default is None (disabled). If set to a
string key accepted by the
model-argument of
torch.nn.functional.interpolate, the
feature map will be resized to match the
interpolated size. This is useful if
you work with large resolutions and want
to save up on computation time.
is done if the resolution is smaller.

	interpolation_downsampling (int [https://docs.python.org/3/library/functions.html#int]) – Default is 32. The target resolution
if downsampling is enabled.

API Pages

	SaturationTracker(savefile, save_to, ...[, ...])

	Takes PyTorch module and records layer saturation,

delve.SaturationTracker

	
class delve.SaturationTracker(savefile: str, save_to: ~typing.Union[str, ~delve.writers.AbstractWriter], modules: ~torch.nn.modules.module.Module, layer_filter: ~typing.Callable[[~typing.Dict[str, ~torch.nn.modules.module.Module]], ~typing.Dict[str, ~torch.nn.modules.module.Module]] = <function SaturationTracker.<lambda>>, writer_args: ~typing.Optional[~typing.Dict[str, ~typing.Any]] = None, log_interval=1, max_samples=None, stats: list = ['lsat'], layerwise_sat: bool = True, reset_covariance: bool = True, average_sat: bool = False, ignore_layer_names: ~typing.List[str] = [], include_conv: bool = True, conv_method: str = 'channelwise', timeseries_method: str = 'last_timestep', sat_threshold: str = 0.99, nosave=False, verbose: bool = False, device='cuda:0', initial_epoch: int = 0, interpolation_strategy: ~typing.Optional[str] = None, interpolation_downsampling: int = 32)

	
	Takes PyTorch module and records layer saturation,
	intrinsic dimensionality and other scalars.

	Parameters:

	
	savefile (str [https://docs.python.org/3/library/stdtypes.html#str]) – destination for summaries

	(str (save_to) –
	Specify one or multiple save strategies.
	You can use preimplemented save strategies or inherit from
the AbstractWriter in order to implement your
own preferred saving strategy.

	pre-existing saving strategies are:
	
	csvstores all stats in a csv-file with one
	row for each epoch.

	plotproduces plots from intrinsic dimensionality
	and / or layer saturation

tensorboard : saves all stats to tensorboard
print : print all metrics on console

as soon as they are logged

	npycreates a folder-structure with npy-files
	containing the logged values. This is the only
save strategy that can save the
full covariance matrix.
This strategy is useful if you want to reproduce
intrinsic dimensionality and saturation values
with other thresholds without re-evaluating
model checkpoints.

	List[Union[str –
	Specify one or multiple save strategies.
	You can use preimplemented save strategies or inherit from
the AbstractWriter in order to implement your
own preferred saving strategy.

	pre-existing saving strategies are:
	
	csvstores all stats in a csv-file with one
	row for each epoch.

	plotproduces plots from intrinsic dimensionality
	and / or layer saturation

tensorboard : saves all stats to tensorboard
print : print all metrics on console

as soon as they are logged

	npycreates a folder-structure with npy-files
	containing the logged values. This is the only
save strategy that can save the
full covariance matrix.
This strategy is useful if you want to reproduce
intrinsic dimensionality and saturation values
with other thresholds without re-evaluating
model checkpoints.

	delve.writers.AbstractWriter]] –
	Specify one or multiple save strategies.
	You can use preimplemented save strategies or inherit from
the AbstractWriter in order to implement your
own preferred saving strategy.

	pre-existing saving strategies are:
	
	csvstores all stats in a csv-file with one
	row for each epoch.

	plotproduces plots from intrinsic dimensionality
	and / or layer saturation

tensorboard : saves all stats to tensorboard
print : print all metrics on console

as soon as they are logged

	npycreates a folder-structure with npy-files
	containing the logged values. This is the only
save strategy that can save the
full covariance matrix.
This strategy is useful if you want to reproduce
intrinsic dimensionality and saturation values
with other thresholds without re-evaluating
model checkpoints.

	modules (torch modules or list [https://docs.python.org/3/library/stdtypes.html#list] of modules) – layer-containing object.
Per default, only Conv2D,
Linear and LSTM-Cells
are recorded

	layer_filter (func) – A filter function that is used to avoid layers from being tracked.
This is function receiving a dictionary as input and returning
it with undesired entries removed. Default: Identity function.
The dictionary contains string keys mapping to torch.nn.Module objects.

	writers_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – contains additional arguments passed over to the
writers. This is only used, when a writer is
initialized through a string-key.

	log_interval (int [https://docs.python.org/3/library/functions.html#int]) – distances between two batches used for updating the
covariance matrix. Default value is 1, which means
that all data is used for computing
intrinsic dimensionality and saturation.
Increasing the log interval is usefull on very
large datasets to reduce numeric instability.

	max_samples (int [https://docs.python.org/3/library/functions.html#int]) – (optional) the covariance matrix in each layer
will halt updating itself when max_samples
are reached. Usecase is similar to log-interval,
when datasets are very large.

	stats (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – list of stats to compute

	supported stats are:
	idim : intrinsic dimensionality
lsat : layer saturation (intrinsic dimensionality divided by feature space dimensionality)
cov : the covariance-matrix (only saveable using the ‘npy’ save strategy)
det : the determinant of the covariance matrix (also known as generalized variance)
trc : the trace of the covariance matrix, generally a more useful metric than det for determining

the total variance of the data than the determinant.
However note that this does not take the correlation between
features into account. On the other hand, in most cases the determinent will be zero, since
there will be very strongly correlated features, so trace might be the better option.

dtrc : the trace of the diagonalmatrix, another way of measuring the dispersion of the data.
lsat : layer saturation (intrinsic dimensionality

divided by feature space dimensionality)

embed : samples embedded in the eigenspace of dimension 2

	layerwise_sat (bool [https://docs.python.org/3/library/functions.html#bool]) – whether or not to include
layerwise saturation when saving

	reset_covariance (bool [https://docs.python.org/3/library/functions.html#bool]) – True by default, resets the covariance
every time the stats are computed. Disabling
this option will strongly bias covariance
since the gradient will influence the model.
We recommend computing saturation at the
end of training and testing.

	include_conv – setting to False includes only linear layers

	conv_method (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	how to subsample convolutional layers. Default is
	channelwise, which means that the each position of
the filter tensor is considered a datapoint,
effectivly yielding a data matrix of shape
(height*width*batch_size, num_filters)

	supported methods are:
	
	channelwisetreats every depth vector of the tensor as a
	datapoint, effectivly reshaping the data tensor
from shape (batch_size, height, width, channel)
into (batch_size*height*width, channel).

	meanapplies global average pooling on
	each feature map

	maxapplies global max pooling on
	each feature map

	medianapplies global median pooling on
	each feature map

	flattenflattenes the entire feature map to a vector,
	reshaping the data tensor into a data matrix
of shape (batch_size, height*width*channel).
This strategy for dealing with convolutions is
extremly memory intensive and will likely cause
memory and performance problems for any
non toy-problem

	timeseries_method (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	how to subsample timeseries methods. Default
	is last_timestep.

	supported methods are:
	timestepwise : stacks each sample timestep-by-timestep
last_timestep : selects the last timestep’s output

	nosave (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, disables saving artifacts (images), default is False

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – print saturation for every layer during training

	sat_threshold (float [https://docs.python.org/3/library/functions.html#float]) – threshold used to determine the number of
eigendirections belonging to the latent space.
In effect, this is the threshold determining
the the intrinsic dimensionality. Default value
is 0.99 (99% of the explained variance), which
is a compromise between a good and interpretable
approximation. From experience the threshold
should be between 0.97 and 0.9995 for
meaningfull results.

	verbose – Change verbosity level (default is 0)

	device (str [https://docs.python.org/3/library/stdtypes.html#str]) – Device to do the computations on.
Default is cuda:0. Generally it is recommended
to do the computations
on the gpu in order to get maximum performance.
Using the cpu is generally slower but it lets
delve use regular RAM instead of the generally
more limited VRAM of the GPU.
Not having delve run on the same device as the
network causes slight performance decrease due
to copying memory between devices during each
forward pass.
Delve can handle models distributed on multiple
GPUs, however delve itself will always
run on a single device.

	initial_epoch (int [https://docs.python.org/3/library/functions.html#int]) – The initial epoch to start with. Default is 0,
which corresponds to a new run.
If initial_epoch != 0 the writers will
look for save states that they can resume.
If set to zero, all existing states
will be overwritten. If set to a lower epoch
than actually recorded the behavior of the
writers is undefined and may result in crashes,
loss of data or corrupted data.

	interpolation_strategy (str [https://docs.python.org/3/library/stdtypes.html#str]) – Default is None (disabled). If set to a
string key accepted by the
model-argument of
torch.nn.functional.interpolate, the
feature map will be resized to match the
interpolated size. This is useful if
you work with large resolutions and want
to save up on computation time.
is done if the resolution is smaller.

	interpolation_downsampling (int [https://docs.python.org/3/library/functions.html#int]) – Default is 32. The target resolution
if downsampling is enabled.

Support for Delve

Bugs

Bugs, issues and improvement requests can be logged in Github Issues [https://github.com/delve-team/delve/issues].

Community

Community support is provided via Gitter [https://gitter.im/delve-chat/community]. Just ask a question there.

Contributing to Delve

(Contribution guidelines largely copied from geopandas [https://geopandas.readthedocs.io/en/latest/contributing.html])

Overview

Contributions to Delve are very welcome. They are likely to
be accepted more quickly if they follow these guidelines.

At this stage of Delve development, the priorities are to define a
simple, usable, and stable API and to have clean, maintainable,
readable code. Performance matters, but not at the expense of those
goals.

In general, Delve follows the conventions of the pandas project
where applicable.

In particular, when submitting a pull request:

	All existing tests should pass. Please make sure that the test
suite passes, both locally and on
GitHub Actions [https://github.com/delve-team/delve/actions/workflows/tests.yaml]. Status on
GitHub Actions will be visible on a pull request.

	New functionality should include tests. Please write reasonable
tests for your code and make sure that they pass on your pull request.

	Classes, methods, functions, etc. should have docstrings. The first
line of a docstring should be a standalone summary. Parameters and
return values should be ducumented explicitly.

	Delve supports python 3 (3.6+). Use modern python idioms when possible.

	Follow PEP 8 when possible.

	Imports should be grouped with standard library imports first,
3rd-party libraries next, and Delve imports third. Within each
grouping, imports should be alphabetized. Always use absolute
imports when possible, and explicit relative imports for local
imports when necessary in tests.

Seven Steps for Contributing

There are seven basic steps to contributing to Delve:

	Fork the Delve git repository

	Create a development environment

	Install Delve dependencies

	Make a development build of Delve

	Make changes to code and add tests

	Update the documentation

	Submit a Pull Request

Each of these 7 steps is detailed below.

1) Forking the Delve repository using Git

To the new user, working with Git is one of the more daunting aspects of contributing to Delve.
It can very quickly become overwhelming, but sticking to the guidelines below will help keep the process
straightforward and mostly trouble free. As always, if you are having difficulties please
feel free to ask for help.

The code is hosted on GitHub [https://github.com/delve-team/delve]. To
contribute you will need to sign up for a free GitHub account [https://github.com/signup/free]. We use Git [http://git-scm.com/] for
version control to allow many people to work together on the project.

Some great resources for learning Git:

	Software Carpentry’s Git Tutorial [http://swcarpentry.github.io/git-novice/]

	Atlassian [https://www.atlassian.com/git/tutorials/what-is-version-control]

	the GitHub help pages [http://help.github.com/].

	Matthew Brett’s Pydagogue [http://matthew-brett.github.com/pydagogue/].

Getting started with Git

GitHub has instructions [http://help.github.com/set-up-git-redirect] for installing git,
setting up your SSH key, and configuring git. All these steps need to be completed before
you can work seamlessly between your local repository and GitHub.

Forking

You will need your own fork to work on the code. Go to the Delve project
page [https://github.com/delve-team/delve] and hit the Fork button. You will
want to clone your fork to your machine:

git clone git@github.com:your-user-name/delve.git delve-yourname
cd delve-yourname
git remote add upstream git://github.com/delve-team/delve.git

This creates the directory delve-yourname and connects your repository to
the upstream (main project) Delve repository.

The testing suite will run automatically on Travis-CI once your pull request is
submitted. However, if you wish to run the test suite on a branch prior to
submitting the pull request, then Travis-CI needs to be hooked up to your
GitHub repository. Instructions for doing so are here [http://about.travis-ci.org/docs/user/getting-started/].

Creating a branch

You want your master branch to reflect only production-ready code, so create a
feature branch for making your changes. For example:

git branch shiny-new-feature
git checkout shiny-new-feature

The above can be simplified to:

git checkout -b shiny-new-feature

This changes your working directory to the shiny-new-feature branch. Keep any
changes in this branch specific to one bug or feature so it is clear
what the branch brings to delve. You can have many shiny-new-features
and switch in between them using the git checkout command.

To update this branch, you need to retrieve the changes from the master branch:

git fetch upstream
git rebase upstream/master

This will replay your commits on top of the latest Delve git master. If this
leads to merge conflicts, you must resolve these before submitting your pull
request. If you have uncommitted changes, you will need to stash them prior
to updating. This will effectively store your changes and they can be reapplied
after updating.

2) Creating a development environment

A development environment is a virtual space where you can keep an independent installation of Delve.
This makes it easy to keep both a stable version of python in one place you use for work, and a development
version (which you may break while playing with code) in another.

An easy way to create a Delve development environment is as follows:

	Install either Anaconda [http://docs.continuum.io/anaconda/] or
miniconda [http://conda.pydata.org/miniconda.html]

	Make sure that you have cloned the repository

	cd to the delve source directory

Tell conda to create a new environment, named delve_dev, or any other name you would like
for this environment, by running:

conda create -n delve_dev

For a python 3 environment:

conda create -n delve_dev python=3.8

This will create the new environment, and not touch any of your existing environments,
nor any existing python installation.

To work in this environment, Windows users should activate it as follows:

activate delve_dev

Mac OSX and Linux users should use:

source activate delve_dev

You will then see a confirmation message to indicate you are in the new development environment.

To view your environments:

conda info -e

To return to you home root environment:

deactivate

See the full conda docs here [http://conda.pydata.org/docs].

At this point you can easily do a development install, as detailed in the next sections.

3) Installing Dependencies

To run Delve in an development environment, you must first install
Delve’s dependencies. We suggest doing so using the following commands
(executed after your development environment has been activated):

pip install -r requirements/reqirements.txt

This should install all necessary dependencies.

Next activate pre-commit hooks by running:

pre-commit install

4) Making a development build

Once dependencies are in place, make an in-place build by navigating to the git
clone of the delve repository and running:

python setup.py develop

5) Making changes and writing tests

Delve is serious about testing and strongly encourages contributors to embrace
test-driven development (TDD) [http://en.wikipedia.org/wiki/Test-driven_development].
This development process “relies on the repetition of a very short development cycle:
first the developer writes an (initially failing) automated test case that defines a desired
improvement or new function, then produces the minimum amount of code to pass that test.”
So, before actually writing any code, you should write your tests. Often the test can be
taken from the original GitHub issue. However, it is always worth considering additional
use cases and writing corresponding tests.

Adding tests is one of the most common requests after code is pushed to delve. Therefore,
it is worth getting in the habit of writing tests ahead of time so this is never an issue.

delve uses the pytest testing system [http://doc.pytest.org/en/latest/] and the convenient
extensions in numpy.testing [http://docs.scipy.org/doc/numpy/reference/routines.testing.html].

Writing tests

All tests should go into the tests directory. This folder contains many
current examples of tests, and we suggest looking to these for inspiration.

Running the test suite

The tests can then be run directly inside your Git clone (without having to
install Delve) by typing:

pytest

6) Updating the Documentation

Delve documentation resides in the doc folder. Changes to the docs are
make by modifying the appropriate file in the source folder within doc.
Delve docs us reStructuredText syntax, which is explained here [http://www.sphinx-doc.org/en/stable/rest.html#rst-primer]
and the docstrings follow the Numpy Docstring standard [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt].

Once you have made your changes, you can build the docs by navigating to the doc folder and typing:

make html

The resulting html pages will be located in doc/build/html.

7) Submitting a Pull Request

Once you’ve made changes and pushed them to your forked repository, you then
submit a pull request to have them integrated into the Delve code base.

You can find a pull request (or PR) tutorial in the GitHub’s Help Docs [https://help.github.com/articles/using-pull-requests/].

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 delve	

 	
 	
 delve.metrics	

 	
 	
 delve.pca_layers	

 	
 	
 delve.tools	

 	
 	
 delve.torch_utils	

 	
 	
 delve.torchcallback	

 	
 	
 delve.writers	

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V

_

 	
 	__init__() (delve.writers.CompositWriter method)

 	(delve.writers.NPYWriter method)

 	(delve.writers.PrintWriter method)

 	
 	_check_savestate_ok() (delve.writers.AbstractWriter method)

 	_get_writer() (delve.torchcallback.SaturationTracker method)

 	_init_internals() (delve.torch_utils.TorchCovarianceMatrix method)

A

 	
 	AbstractWriter (class in delve.writers)

 	add_sample_scalar() (delve.writers.CSVandPlottingWriter method)

 	add_saturations() (delve.torchcallback.SaturationTracker method)

 	add_scalar() (delve.writers.AbstractWriter method)

 	(delve.writers.CompositWriter method)

 	(delve.writers.CSVandPlottingWriter method)

 	(delve.writers.CSVWriter method)

 	(delve.writers.NPYWriter method)

 	(delve.writers.PrintWriter method)

 	(delve.writers.TensorBoardWriter method)

 	
 	add_scalars() (delve.writers.AbstractWriter method)

 	(delve.writers.CompositWriter method)

 	(delve.writers.CSVandPlottingWriter method)

 	(delve.writers.CSVWriter method)

 	(delve.writers.NPYWriter method)

 	(delve.writers.PrintWriter method)

 	(delve.writers.TensorBoardWriter method)

C

 	
 	centering (delve.pca_layers.LinearPCALayer property)

 	change_all_pca_layer_thresholds() (in module delve.pca_layers)

 	change_all_pca_layer_thresholds_and_inject_random_directions() (in module delve.pca_layers)

 	CheckLayerSat (class in delve.torchcallback)

 	close() (delve.torchcallback.SaturationTracker method)

 	(delve.writers.AbstractWriter method)

 	(delve.writers.CompositWriter method)

 	(delve.writers.CSVandPlottingWriter method)

 	(delve.writers.CSVWriter method)

 	(delve.writers.NPYWriter method)

 	(delve.writers.PrintWriter method)

 	(delve.writers.TensorBoardWriter method)

 	
 	CompositWriter (class in delve.writers)

 	compute_cov_determinant() (in module delve.metrics)

 	compute_cov_trace() (in module delve.metrics)

 	compute_diag_trace() (in module delve.metrics)

 	compute_intrinsic_dimensionality() (in module delve.metrics)

 	compute_saturation() (in module delve.metrics)

 	Conv2DPCALayer (class in delve.pca_layers)

 	CSVandPlottingWriter (class in delve.writers)

 	CSVWriter (class in delve.writers)

D

 	
 	
 delve

 	module

 	
 delve.metrics

 	module

 	
 delve.pca_layers

 	module

 	
 delve.tools

 	module

 	
 	
 delve.torch_utils

 	module

 	
 delve.torchcallback

 	module

 	
 delve.writers

 	module

E

 	
 	extract_layer_stat() (in module delve.writers)

F

 	
 	fix() (delve.torch_utils.TorchCovarianceMatrix method)

 	
 	forward() (delve.pca_layers.Conv2DPCALayer method)

 	(delve.pca_layers.LinearPCALayer method)

G

 	
 	get_layer_from_submodule() (delve.torchcallback.SaturationTracker method)

 	
 	get_layers_recursive() (delve.torchcallback.SaturationTracker method)

I

 	
 	is_floating_point() (delve.pca_layers.LinearPCALayer method)

 	
 	is_recording() (delve.torchcallback.SaturationTracker method)

K

 	
 	keepdim (delve.pca_layers.Conv2DPCALayer attribute)

L

 	
 	LinearPCALayer (class in delve.pca_layers)

M

 	
 	
 module

 	delve

 	delve.metrics

 	delve.pca_layers

 	delve.tools

 	delve.torch_utils

 	delve.torchcallback

 	delve.writers

N

 	
 	NPYWriter (class in delve.writers)

 	
 	num (delve.pca_layers.LinearPCALayer attribute)

P

 	
 	pca_computed (delve.pca_layers.Conv2DPCALayer attribute)

 	plot_scatter_from_results() (in module delve.writers)

 	
 	plot_stat() (in module delve.writers)

 	plot_stat_level_from_results() (in module delve.writers)

 	PrintWriter (class in delve.writers)

R

 	
 	reconstruct_csv_from_npy_data() (in module delve.tools)

 	register_forward_hooks() (delve.torchcallback.SaturationTracker method)

 	resume() (delve.torchcallback.SaturationTracker method)

 	resume_from_saved_state() (delve.writers.AbstractWriter method)

 	(delve.writers.CompositWriter method)

 	(delve.writers.CSVandPlottingWriter method)

 	(delve.writers.CSVWriter method)

 	(delve.writers.NPYWriter method)

 	(delve.writers.PrintWriter method)

 	(delve.writers.TensorBoardWriter method)

 	
 	rvs() (in module delve.pca_layers)

S

 	
 	SaturationTracker (class in delve), [1], [2]

 	(class in delve.torchcallback)

 	save() (delve.torchcallback.SaturationTracker method)

 	(delve.writers.AbstractWriter method)

 	(delve.writers.CompositWriter method)

 	(delve.writers.CSVandPlottingWriter method)

 	(delve.writers.CSVWriter method)

 	(delve.writers.NPYWriter method)

 	(delve.writers.PrintWriter method)

 	(delve.writers.TensorBoardWriter method)

 	
 	stop() (delve.torchcallback.SaturationTracker method)

T

 	
 	TensorBoardWriter (class in delve.writers)

 	threshold (delve.pca_layers.LinearPCALayer property)

 	TorchCovarianceMatrix (class in delve)

 	(class in delve.torch_utils)

 	
 	training (delve.pca_layers.Conv2DPCALayer attribute)

 	(delve.pca_layers.LinearPCALayer attribute)

U

 	
 	update() (delve.torch_utils.TorchCovarianceMatrix method)

V

 	
 	verbose (delve.pca_layers.Conv2DPCALayer attribute)

delve package

Submodules

delve.metrics module

	
delve.metrics.compute_intrinsic_dimensionality(cov: Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor], thresh: float [https://docs.python.org/3/library/functions.html#float] = 0.99) → int [https://docs.python.org/3/library/functions.html#int]

	Compute the intrinsic dimensionality based on the covariance matrix
:param cov: the covariance matrix as a torch tensor
:param thresh: delta value; the explained variance of the covariance matrix
:return: The intrinsic dimensionality; an integer value greater than zero

	
delve.metrics.compute_saturation(cov: Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor], thresh: float [https://docs.python.org/3/library/functions.html#float] = 0.99) → float [https://docs.python.org/3/library/functions.html#float]

	Computes the saturation
:param cov: the covariance matrix as a torch tensor
:param thresh: delta value; the explained variance of the covariance matrix
:return: a value between 0 and 1

	
delve.metrics.compute_cov_determinant(cov: Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) → float [https://docs.python.org/3/library/functions.html#float]

	Computes the determinant of the covariance matrix (also known as generalized variance)
:param cov: the covariannce matrix as torch tensor
:return: the determinant

	
delve.metrics.compute_cov_trace(cov: Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) → float [https://docs.python.org/3/library/functions.html#float]

	Computes the trace of the covariance matrix (also known as total variance)
:param cov: the covariannce matrix as torch tensor
:return: the trace

	
delve.metrics.compute_diag_trace(cov: Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor]) → float [https://docs.python.org/3/library/functions.html#float]

	Computes the trace of the covariance matrix diagonal matrix
:param cov: the covariannce matrix as torch tensor
:return: the trace

delve.pca_layers module

	
delve.pca_layers.rvs(dim=3) → ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Create random orthonormal matrix of size dim.

Note

Yanked from hpaulj’s implementation of SciPy’s scipy.stats.special_ortho_group() in Numpy at https://stackoverflow.com/questions/38426349/how-to-create-random-orthonormal-matrix-in-python-numpy which is from the paper:

Stewart, G.W., “The efficient generation of random orthogonal
matrices with an application to condition estimators”, SIAM Journal
on Numerical Analysis, 17(3), pp. 403-409, 1980.

	
delve.pca_layers.change_all_pca_layer_thresholds_and_inject_random_directions(threshold: float [https://docs.python.org/3/library/functions.html#float], network: Module [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module], verbose: bool [https://docs.python.org/3/library/functions.html#bool] = False, device='cpu', include_names: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][list [https://docs.python.org/3/library/stdtypes.html#list], list [https://docs.python.org/3/library/stdtypes.html#list], list [https://docs.python.org/3/library/stdtypes.html#list]]

	

	
delve.pca_layers.change_all_pca_layer_thresholds(threshold: float [https://docs.python.org/3/library/functions.html#float], network: Module [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module], verbose: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	

	
class delve.pca_layers.LinearPCALayer(in_features: int [https://docs.python.org/3/library/functions.html#int], threshold: float [https://docs.python.org/3/library/functions.html#float] = 0.99, keepdim: bool [https://docs.python.org/3/library/functions.html#bool] = True, verbose: bool [https://docs.python.org/3/library/functions.html#bool] = False, gradient_epoch_start: int [https://docs.python.org/3/library/functions.html#int] = 20, centering: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Bases: Module [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module]

Eigenspace of the covariance matrix generated in TorchCovarianceMatrix with
equation (1).

	
num = 0

	

	
is_floating_point()

	

	
property threshold: float [https://docs.python.org/3/library/functions.html#float]

	

	
property centering

	

	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
training: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
class delve.pca_layers.Conv2DPCALayer(in_filters, threshold: float [https://docs.python.org/3/library/functions.html#float] = 0.99, verbose: bool [https://docs.python.org/3/library/functions.html#bool] = True, gradient_epoch_start: int [https://docs.python.org/3/library/functions.html#int] = 20, centering: bool [https://docs.python.org/3/library/functions.html#bool] = False, downsampling: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None)

	Bases: LinearPCALayer

Compute PCA of Conv2D layer

	
training: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
keepdim: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
verbose: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
pca_computed: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

delve.tools module

	
delve.tools.reconstruct_csv_from_npy_data(npywriter_out_path: str [https://docs.python.org/3/library/stdtypes.html#str], savefile: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, thresh: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]] = None, stats: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]] = ['lsat', 'idim']) → DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	This function allows the user to reconstruct the csv as constructed by the csv-writer.
It further allows computing metrics that were initially not computed during training, if the covariance matrix is
stored during training using the npy-writer.
It also allows to recompute stats using different thresholds than originally used during training.
:param npywriter_out_path: The path were the npy-writer has written the output
:param savefile: the target-file to store the csv into, if not set, the data is not saved
:param thresh: the threshold for computing the intrinsic dimensionality and saturation. If not set, the function
tries to find stored version of all metrics. If set to any value, the stats will be computed from the stored covariance matrix.
If not covariance matrix is given and threshold is set an error is raised.
:param stats: the statistic to compute or read. Valid values are ‘sat’ and ‘idim’. All other metrics that were recorded
during training and properly stored as npy-files will be read as well.
:return:

delve.torch_utils module

	
class delve.torch_utils.TorchCovarianceMatrix(bias: bool [https://docs.python.org/3/library/functions.html#bool] = False, device: str [https://docs.python.org/3/library/stdtypes.html#str] = 'cuda:0', save_data: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Computes covariance matrix of features as described in https://arxiv.org/pdf/2006.08679.pdf:

\begin{eqnarray}
Q(Z_l, Z_l) = \frac{\sum^{B}_{b=0}A_{l,b}^T A_{l,b}}{n} -(\bar{A}_l \bigotimes \bar{A}_l)
\end{eqnarray}
for \(B\) batches of layer output matrix \(A_l\) and \(n\) number of samples.

Note

Method enforces float-64 precision, which may cause numerical instability in some cases.

	
_init_internals(x: Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor])

	Init the internal structures.

The reason this is not done in the constructor is that we want to be
able to derive the input dimension and the dtype directly from the
data this class receives.

	
update(x: Tensor [https://pytorch.org/docs/master/tensors.html#torch.Tensor], vae: bool [https://docs.python.org/3/library/functions.html#bool])

	Update internal structures given a batch of data

	
fix(center=True)

	Returns the Covariance matrix

delve.torchcallback module

	
class delve.torchcallback.SaturationTracker(savefile: str, save_to: ~typing.Union[str, ~delve.writers.AbstractWriter], modules: ~torch.nn.modules.module.Module, layer_filter: ~typing.Callable[[~typing.Dict[str, ~torch.nn.modules.module.Module]], ~typing.Dict[str, ~torch.nn.modules.module.Module]] = <function SaturationTracker.<lambda>>, writer_args: ~typing.Optional[~typing.Dict[str, ~typing.Any]] = None, log_interval=1, max_samples=None, stats: list = ['lsat'], layerwise_sat: bool = True, reset_covariance: bool = True, average_sat: bool = False, ignore_layer_names: ~typing.List[str] = [], include_conv: bool = True, conv_method: str = 'channelwise', timeseries_method: str = 'last_timestep', sat_threshold: str = 0.99, nosave=False, verbose: bool = False, device='cuda:0', initial_epoch: int = 0, interpolation_strategy: ~typing.Optional[str] = None, interpolation_downsampling: int = 32)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	Takes PyTorch module and records layer saturation,
	intrinsic dimensionality and other scalars.

	Parameters:

	
	savefile (str [https://docs.python.org/3/library/stdtypes.html#str]) – destination for summaries

	(str (save_to) –
	Specify one or multiple save strategies.
	You can use preimplemented save strategies or inherit from
the AbstractWriter in order to implement your
own preferred saving strategy.

	pre-existing saving strategies are:
	
	csvstores all stats in a csv-file with one
	row for each epoch.

	plotproduces plots from intrinsic dimensionality
	and / or layer saturation

tensorboard : saves all stats to tensorboard
print : print all metrics on console

as soon as they are logged

	npycreates a folder-structure with npy-files
	containing the logged values. This is the only
save strategy that can save the
full covariance matrix.
This strategy is useful if you want to reproduce
intrinsic dimensionality and saturation values
with other thresholds without re-evaluating
model checkpoints.

	List[Union[str –
	Specify one or multiple save strategies.
	You can use preimplemented save strategies or inherit from
the AbstractWriter in order to implement your
own preferred saving strategy.

	pre-existing saving strategies are:
	
	csvstores all stats in a csv-file with one
	row for each epoch.

	plotproduces plots from intrinsic dimensionality
	and / or layer saturation

tensorboard : saves all stats to tensorboard
print : print all metrics on console

as soon as they are logged

	npycreates a folder-structure with npy-files
	containing the logged values. This is the only
save strategy that can save the
full covariance matrix.
This strategy is useful if you want to reproduce
intrinsic dimensionality and saturation values
with other thresholds without re-evaluating
model checkpoints.

	delve.writers.AbstractWriter]] –
	Specify one or multiple save strategies.
	You can use preimplemented save strategies or inherit from
the AbstractWriter in order to implement your
own preferred saving strategy.

	pre-existing saving strategies are:
	
	csvstores all stats in a csv-file with one
	row for each epoch.

	plotproduces plots from intrinsic dimensionality
	and / or layer saturation

tensorboard : saves all stats to tensorboard
print : print all metrics on console

as soon as they are logged

	npycreates a folder-structure with npy-files
	containing the logged values. This is the only
save strategy that can save the
full covariance matrix.
This strategy is useful if you want to reproduce
intrinsic dimensionality and saturation values
with other thresholds without re-evaluating
model checkpoints.

	modules (torch modules or list [https://docs.python.org/3/library/stdtypes.html#list] of modules) – layer-containing object.
Per default, only Conv2D,
Linear and LSTM-Cells
are recorded

	layer_filter (func) – A filter function that is used to avoid layers from being tracked.
This is function receiving a dictionary as input and returning
it with undesired entries removed. Default: Identity function.
The dictionary contains string keys mapping to torch.nn.Module objects.

	writers_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – contains additional arguments passed over to the
writers. This is only used, when a writer is
initialized through a string-key.

	log_interval (int [https://docs.python.org/3/library/functions.html#int]) – distances between two batches used for updating the
covariance matrix. Default value is 1, which means
that all data is used for computing
intrinsic dimensionality and saturation.
Increasing the log interval is usefull on very
large datasets to reduce numeric instability.

	max_samples (int [https://docs.python.org/3/library/functions.html#int]) – (optional) the covariance matrix in each layer
will halt updating itself when max_samples
are reached. Usecase is similar to log-interval,
when datasets are very large.

	stats (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – list of stats to compute

	supported stats are:
	idim : intrinsic dimensionality
lsat : layer saturation (intrinsic dimensionality divided by feature space dimensionality)
cov : the covariance-matrix (only saveable using the ‘npy’ save strategy)
det : the determinant of the covariance matrix (also known as generalized variance)
trc : the trace of the covariance matrix, generally a more useful metric than det for determining

the total variance of the data than the determinant.
However note that this does not take the correlation between
features into account. On the other hand, in most cases the determinent will be zero, since
there will be very strongly correlated features, so trace might be the better option.

dtrc : the trace of the diagonalmatrix, another way of measuring the dispersion of the data.
lsat : layer saturation (intrinsic dimensionality

divided by feature space dimensionality)

embed : samples embedded in the eigenspace of dimension 2

	layerwise_sat (bool [https://docs.python.org/3/library/functions.html#bool]) – whether or not to include
layerwise saturation when saving

	reset_covariance (bool [https://docs.python.org/3/library/functions.html#bool]) – True by default, resets the covariance
every time the stats are computed. Disabling
this option will strongly bias covariance
since the gradient will influence the model.
We recommend computing saturation at the
end of training and testing.

	include_conv – setting to False includes only linear layers

	conv_method (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	how to subsample convolutional layers. Default is
	channelwise, which means that the each position of
the filter tensor is considered a datapoint,
effectivly yielding a data matrix of shape
(height*width*batch_size, num_filters)

	supported methods are:
	
	channelwisetreats every depth vector of the tensor as a
	datapoint, effectivly reshaping the data tensor
from shape (batch_size, height, width, channel)
into (batch_size*height*width, channel).

	meanapplies global average pooling on
	each feature map

	maxapplies global max pooling on
	each feature map

	medianapplies global median pooling on
	each feature map

	flattenflattenes the entire feature map to a vector,
	reshaping the data tensor into a data matrix
of shape (batch_size, height*width*channel).
This strategy for dealing with convolutions is
extremly memory intensive and will likely cause
memory and performance problems for any
non toy-problem

	timeseries_method (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	how to subsample timeseries methods. Default
	is last_timestep.

	supported methods are:
	timestepwise : stacks each sample timestep-by-timestep
last_timestep : selects the last timestep’s output

	nosave (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, disables saving artifacts (images), default is False

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – print saturation for every layer during training

	sat_threshold (float [https://docs.python.org/3/library/functions.html#float]) – threshold used to determine the number of
eigendirections belonging to the latent space.
In effect, this is the threshold determining
the the intrinsic dimensionality. Default value
is 0.99 (99% of the explained variance), which
is a compromise between a good and interpretable
approximation. From experience the threshold
should be between 0.97 and 0.9995 for
meaningfull results.

	verbose – Change verbosity level (default is 0)

	device (str [https://docs.python.org/3/library/stdtypes.html#str]) – Device to do the computations on.
Default is cuda:0. Generally it is recommended
to do the computations
on the gpu in order to get maximum performance.
Using the cpu is generally slower but it lets
delve use regular RAM instead of the generally
more limited VRAM of the GPU.
Not having delve run on the same device as the
network causes slight performance decrease due
to copying memory between devices during each
forward pass.
Delve can handle models distributed on multiple
GPUs, however delve itself will always
run on a single device.

	initial_epoch (int [https://docs.python.org/3/library/functions.html#int]) – The initial epoch to start with. Default is 0,
which corresponds to a new run.
If initial_epoch != 0 the writers will
look for save states that they can resume.
If set to zero, all existing states
will be overwritten. If set to a lower epoch
than actually recorded the behavior of the
writers is undefined and may result in crashes,
loss of data or corrupted data.

	interpolation_strategy (str [https://docs.python.org/3/library/stdtypes.html#str]) – Default is None (disabled). If set to a
string key accepted by the
model-argument of
torch.nn.functional.interpolate, the
feature map will be resized to match the
interpolated size. This is useful if
you work with large resolutions and want
to save up on computation time.
is done if the resolution is smaller.

	interpolation_downsampling (int [https://docs.python.org/3/library/functions.html#int]) – Default is 32. The target resolution
if downsampling is enabled.

	
is_recording() → bool [https://docs.python.org/3/library/functions.html#bool]

	

	
stop()

	

	
resume()

	

	
close()

	User endpoint to close writer and progress bars.

	
get_layer_from_submodule(submodule: Module [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module], layers: dict [https://docs.python.org/3/library/stdtypes.html#dict], name_prefix: str [https://docs.python.org/3/library/stdtypes.html#str] = '')

	

	
get_layers_recursive(modules: Union [https://docs.python.org/3/library/typing.html#typing.Union][list [https://docs.python.org/3/library/stdtypes.html#list], Module [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module]])

	

	
_get_writer(save_to, writers_args) → AbstractWriter

	Create a writer to log history to writer_dir.

	
register_forward_hooks(layer: Module [https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module], stats: list [https://docs.python.org/3/library/stdtypes.html#list])

	Register hook to show stats in layer.

	
add_saturations(save=True)

	Computes saturation and saves all stats
:return:

	
save()

	

	
class delve.torchcallback.CheckLayerSat(savefile: str, save_to: ~typing.Union[str, ~delve.writers.AbstractWriter], modules: ~torch.nn.modules.module.Module, layer_filter: ~typing.Callable[[~typing.Dict[str, ~torch.nn.modules.module.Module]], ~typing.Dict[str, ~torch.nn.modules.module.Module]] = <function SaturationTracker.<lambda>>, writer_args: ~typing.Optional[~typing.Dict[str, ~typing.Any]] = None, log_interval=1, max_samples=None, stats: list = ['lsat'], layerwise_sat: bool = True, reset_covariance: bool = True, average_sat: bool = False, ignore_layer_names: ~typing.List[str] = [], include_conv: bool = True, conv_method: str = 'channelwise', timeseries_method: str = 'last_timestep', sat_threshold: str = 0.99, nosave=False, verbose: bool = False, device='cuda:0', initial_epoch: int = 0, interpolation_strategy: ~typing.Optional[str] = None, interpolation_downsampling: int = 32)

	Bases: SaturationTracker

delve.writers module

This file contains alternative file writers

	
class delve.writers.AbstractWriter

	Bases: ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

	
_check_savestate_ok(savepath: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Checks if a savestate from a writer is okay; raises a warning if not
:param savepath: the path to the savestate
:return:

	
abstract resume_from_saved_state(initial_epoch: int [https://docs.python.org/3/library/functions.html#int])

	

	
abstract add_scalar(name, value, **kwargs)

	

	
abstract add_scalars(prefix, value_dict, global_step, **kwargs)

	

	
abstract save()

	

	
abstract close()

	

	
class delve.writers.CompositWriter(writers: List [https://docs.python.org/3/library/typing.html#typing.List][AbstractWriter])

	Bases: AbstractWriter

	
__init__(writers: List [https://docs.python.org/3/library/typing.html#typing.List][AbstractWriter])

	This writer combines multiple writers.
:param writers: List of writers. Each writer is called when the CompositeWriter is invoked.

	
resume_from_saved_state(initial_epoch: int [https://docs.python.org/3/library/functions.html#int])

	

	
add_scalar(name, value, **kwargs)

	

	
add_scalars(prefix, value_dict, **kwargs)

	

	
save()

	

	
close()

	

	
class delve.writers.CSVWriter(savepath: str [https://docs.python.org/3/library/stdtypes.html#str], **kwargs)

	Bases: AbstractWriter

This writer produces a csv file with all saturation values.
The csv-file is overwritten with
an updated version every time save() is called.
:param savepath: CSV file path

	
resume_from_saved_state(initial_epoch: int [https://docs.python.org/3/library/functions.html#int])

	

	
add_scalar(name, value, **kwargs)

	

	
add_scalars(prefix, value_dict, **kwargs)

	

	
save()

	

	
close()

	

	
class delve.writers.NPYWriter(savepath: str [https://docs.python.org/3/library/stdtypes.html#str], zip: bool [https://docs.python.org/3/library/functions.html#bool] = False, **kwargs)

	Bases: AbstractWriter

	
__init__(savepath: str [https://docs.python.org/3/library/stdtypes.html#str], zip: bool [https://docs.python.org/3/library/functions.html#bool] = False, **kwargs)

	The NPYWriter creates a folder containing one subfolder for each stat.
Each subfolder contains a npy-file with the saturation value for each epoch.
This writer saves non-scalar values and can thus be used to save
the covariance-matrix.
:param savepath: The root folder to save the folder structure to
:param zip: Whether to zip the output folder after every invocation

	
resume_from_saved_state(initial_epoch: int [https://docs.python.org/3/library/functions.html#int])

	

	
add_scalar(name, value, **kwargs)

	

	
add_scalars(prefix, value_dict, **kwargs)

	

	
save()

	

	
close()

	

	
class delve.writers.PrintWriter(**kwargs)

	Bases: AbstractWriter

	
__init__(**kwargs)

	Prints output to the console

	
resume_from_saved_state(initial_epoch: int [https://docs.python.org/3/library/functions.html#int])

	

	
add_scalar(name, value, **kwargs)

	

	
add_scalars(prefix, value_dict, **kwargs)

	

	
save()

	

	
close()

	

	
class delve.writers.TensorBoardWriter(savepath: str [https://docs.python.org/3/library/stdtypes.html#str], **kwargs)

	Bases: AbstractWriter

Writes output to tensorflow logs
:param savepath: the path for result logging

	
resume_from_saved_state(initial_epoch: int [https://docs.python.org/3/library/functions.html#int])

	

	
add_scalar(name, value, **kwargs)

	

	
add_scalars(prefix, value_dict, **kwargs)

	

	
save()

	

	
close()

	

	
class delve.writers.CSVandPlottingWriter(savepath: str [https://docs.python.org/3/library/stdtypes.html#str], plot_manipulation_func: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes]], Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes]]] = None, **kwargs)

	Bases: CSVWriter

This writer produces CSV files and plots.
:param savepath: Path to store plots and CSV files
:param plot_manipulation_func: A function mapping an axis object to an axis object by

using pyplot code.

	Parameters:

	kwargs –

	
resume_from_saved_state(initial_epoch: int [https://docs.python.org/3/library/functions.html#int])

	

	
add_scalar(name, value, **kwargs)

	

	
add_sample_scalar(name, value, **kwargs)

	

	
add_scalars(prefix, value_dict, sample_value_dict, **kwargs)

	

	
save()

	

	
close()

	

	
delve.writers.extract_layer_stat(df, epoch=19, primary_metric=None, stat='saturation', state_mode='train') → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame], float [https://docs.python.org/3/library/functions.html#float]]

	Extracts a specific statistic for a single epoch from a result dataframe as produced by the CSV-writer
:param df: The dataframe produced by a CSVWriter
:param epoch: Epoch to filter by
:param primary_metric: Primary metric for performance evaluation (optional)
:param stat: The statistic to match. Must be a substring matching all columns belonging to stat statistic like “saturation”
:return: A dataframe with a single row, corresponding to the epoch containing only the columns that contain the substring
described in the stat-parameter in their name. Second return value is the primary metric value

	
delve.writers.plot_stat(df, stat, pm=-1, savepath='run.png', epoch=0, primary_metric=None, fontsize=16, figsize=None, line=True, scatter=True, ylim=(0, 1.0), alpha_line=0.6, alpha_scatter=1.0, color_line=None, color_scatter=None, primary_metric_loc=(0.7, 0.8), show_col_label_x=True, show_col_label_y=True, show_grid=True, save=True, samples=False, stat_mode='train') → Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes]

	Plot statistics

	Parameters:

	
	df –

	stat –

	pm –

	savepath –

	epoch –

	primary_metric –

	fontsize –

	figsize –

	line –

	scatter –

	ylim –

	alpha_line –

	alpha_scatter –

	color_line –

	color_scatter –

	primary_metric_loc –

	show_col_label_x –

	show_col_label_y –

	show_grid –

	save –

	Returns:

	

	
delve.writers.plot_stat_level_from_results(savepath, epoch, stat, primary_metric=None, fontsize=16, figsize=None, line=True, scatter=True, ylim=(0, 1.0), alpha_line=0.6, alpha_scatter=1.0, color_line=None, color_scatter=None, primary_metric_loc=(0.7, 0.8), show_col_label_x=True, show_col_label_y=True, show_grid=True, save=True, stat_mode='train')

	

	
delve.writers.plot_scatter_from_results(savepath, epoch, stat, df)

	

Module contents

delve

	delve package
	Submodules

	delve.metrics module
	compute_intrinsic_dimensionality()

	compute_saturation()

	compute_cov_determinant()

	compute_cov_trace()

	compute_diag_trace()

	delve.pca_layers module
	rvs()

	change_all_pca_layer_thresholds_and_inject_random_directions()

	change_all_pca_layer_thresholds()

	LinearPCALayer
	LinearPCALayer.num

	LinearPCALayer.is_floating_point()

	LinearPCALayer.threshold

	LinearPCALayer.centering

	LinearPCALayer.forward()

	LinearPCALayer.training

	Conv2DPCALayer
	Conv2DPCALayer.training

	Conv2DPCALayer.keepdim

	Conv2DPCALayer.verbose

	Conv2DPCALayer.pca_computed

	Conv2DPCALayer.forward()

	delve.tools module
	reconstruct_csv_from_npy_data()

	delve.torch_utils module
	TorchCovarianceMatrix
	TorchCovarianceMatrix._init_internals()

	TorchCovarianceMatrix.update()

	TorchCovarianceMatrix.fix()

	delve.torchcallback module
	SaturationTracker
	SaturationTracker.is_recording()

	SaturationTracker.stop()

	SaturationTracker.resume()

	SaturationTracker.close()

	SaturationTracker.get_layer_from_submodule()

	SaturationTracker.get_layers_recursive()

	SaturationTracker._get_writer()

	SaturationTracker.register_forward_hooks()

	SaturationTracker.add_saturations()

	SaturationTracker.save()

	CheckLayerSat

	delve.writers module
	AbstractWriter
	AbstractWriter._check_savestate_ok()

	AbstractWriter.resume_from_saved_state()

	AbstractWriter.add_scalar()

	AbstractWriter.add_scalars()

	AbstractWriter.save()

	AbstractWriter.close()

	CompositWriter
	CompositWriter.__init__()

	CompositWriter.resume_from_saved_state()

	CompositWriter.add_scalar()

	CompositWriter.add_scalars()

	CompositWriter.save()

	CompositWriter.close()

	CSVWriter
	CSVWriter.resume_from_saved_state()

	CSVWriter.add_scalar()

	CSVWriter.add_scalars()

	CSVWriter.save()

	CSVWriter.close()

	NPYWriter
	NPYWriter.__init__()

	NPYWriter.resume_from_saved_state()

	NPYWriter.add_scalar()

	NPYWriter.add_scalars()

	NPYWriter.save()

	NPYWriter.close()

	PrintWriter
	PrintWriter.__init__()

	PrintWriter.resume_from_saved_state()

	PrintWriter.add_scalar()

	PrintWriter.add_scalars()

	PrintWriter.save()

	PrintWriter.close()

	TensorBoardWriter
	TensorBoardWriter.resume_from_saved_state()

	TensorBoardWriter.add_scalar()

	TensorBoardWriter.add_scalars()

	TensorBoardWriter.save()

	TensorBoardWriter.close()

	CSVandPlottingWriter
	CSVandPlottingWriter.resume_from_saved_state()

	CSVandPlottingWriter.add_scalar()

	CSVandPlottingWriter.add_sample_scalar()

	CSVandPlottingWriter.add_scalars()

	CSVandPlottingWriter.save()

	CSVandPlottingWriter.close()

	extract_layer_stat()

	plot_stat()

	plot_stat_level_from_results()

	plot_scatter_from_results()

	Module contents

delve.SaturationTracker

	
class delve.SaturationTracker(savefile: str, save_to: ~typing.Union[str, ~delve.writers.AbstractWriter], modules: ~torch.nn.modules.module.Module, layer_filter: ~typing.Callable[[~typing.Dict[str, ~torch.nn.modules.module.Module]], ~typing.Dict[str, ~torch.nn.modules.module.Module]] = <function SaturationTracker.<lambda>>, writer_args: ~typing.Optional[~typing.Dict[str, ~typing.Any]] = None, log_interval=1, max_samples=None, stats: list = ['lsat'], layerwise_sat: bool = True, reset_covariance: bool = True, average_sat: bool = False, ignore_layer_names: ~typing.List[str] = [], include_conv: bool = True, conv_method: str = 'channelwise', timeseries_method: str = 'last_timestep', sat_threshold: str = 0.99, nosave=False, verbose: bool = False, device='cuda:0', initial_epoch: int = 0, interpolation_strategy: ~typing.Optional[str] = None, interpolation_downsampling: int = 32)

	
	Takes PyTorch module and records layer saturation,
	intrinsic dimensionality and other scalars.

	Parameters:

	
	savefile (str [https://docs.python.org/3/library/stdtypes.html#str]) – destination for summaries

	(str (save_to) –
	Specify one or multiple save strategies.
	You can use preimplemented save strategies or inherit from
the AbstractWriter in order to implement your
own preferred saving strategy.

	pre-existing saving strategies are:
	
	csvstores all stats in a csv-file with one
	row for each epoch.

	plotproduces plots from intrinsic dimensionality
	and / or layer saturation

tensorboard : saves all stats to tensorboard
print : print all metrics on console

as soon as they are logged

	npycreates a folder-structure with npy-files
	containing the logged values. This is the only
save strategy that can save the
full covariance matrix.
This strategy is useful if you want to reproduce
intrinsic dimensionality and saturation values
with other thresholds without re-evaluating
model checkpoints.

	List[Union[str –
	Specify one or multiple save strategies.
	You can use preimplemented save strategies or inherit from
the AbstractWriter in order to implement your
own preferred saving strategy.

	pre-existing saving strategies are:
	
	csvstores all stats in a csv-file with one
	row for each epoch.

	plotproduces plots from intrinsic dimensionality
	and / or layer saturation

tensorboard : saves all stats to tensorboard
print : print all metrics on console

as soon as they are logged

	npycreates a folder-structure with npy-files
	containing the logged values. This is the only
save strategy that can save the
full covariance matrix.
This strategy is useful if you want to reproduce
intrinsic dimensionality and saturation values
with other thresholds without re-evaluating
model checkpoints.

	delve.writers.AbstractWriter]] –
	Specify one or multiple save strategies.
	You can use preimplemented save strategies or inherit from
the AbstractWriter in order to implement your
own preferred saving strategy.

	pre-existing saving strategies are:
	
	csvstores all stats in a csv-file with one
	row for each epoch.

	plotproduces plots from intrinsic dimensionality
	and / or layer saturation

tensorboard : saves all stats to tensorboard
print : print all metrics on console

as soon as they are logged

	npycreates a folder-structure with npy-files
	containing the logged values. This is the only
save strategy that can save the
full covariance matrix.
This strategy is useful if you want to reproduce
intrinsic dimensionality and saturation values
with other thresholds without re-evaluating
model checkpoints.

	modules (torch modules or list [https://docs.python.org/3/library/stdtypes.html#list] of modules) – layer-containing object.
Per default, only Conv2D,
Linear and LSTM-Cells
are recorded

	layer_filter (func) – A filter function that is used to avoid layers from being tracked.
This is function receiving a dictionary as input and returning
it with undesired entries removed. Default: Identity function.
The dictionary contains string keys mapping to torch.nn.Module objects.

	writers_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – contains additional arguments passed over to the
writers. This is only used, when a writer is
initialized through a string-key.

	log_interval (int [https://docs.python.org/3/library/functions.html#int]) – distances between two batches used for updating the
covariance matrix. Default value is 1, which means
that all data is used for computing
intrinsic dimensionality and saturation.
Increasing the log interval is usefull on very
large datasets to reduce numeric instability.

	max_samples (int [https://docs.python.org/3/library/functions.html#int]) – (optional) the covariance matrix in each layer
will halt updating itself when max_samples
are reached. Usecase is similar to log-interval,
when datasets are very large.

	stats (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – list of stats to compute

	supported stats are:
	idim : intrinsic dimensionality
lsat : layer saturation (intrinsic dimensionality divided by feature space dimensionality)
cov : the covariance-matrix (only saveable using the ‘npy’ save strategy)
det : the determinant of the covariance matrix (also known as generalized variance)
trc : the trace of the covariance matrix, generally a more useful metric than det for determining

the total variance of the data than the determinant.
However note that this does not take the correlation between
features into account. On the other hand, in most cases the determinent will be zero, since
there will be very strongly correlated features, so trace might be the better option.

dtrc : the trace of the diagonalmatrix, another way of measuring the dispersion of the data.
lsat : layer saturation (intrinsic dimensionality

divided by feature space dimensionality)

embed : samples embedded in the eigenspace of dimension 2

	layerwise_sat (bool [https://docs.python.org/3/library/functions.html#bool]) – whether or not to include
layerwise saturation when saving

	reset_covariance (bool [https://docs.python.org/3/library/functions.html#bool]) – True by default, resets the covariance
every time the stats are computed. Disabling
this option will strongly bias covariance
since the gradient will influence the model.
We recommend computing saturation at the
end of training and testing.

	include_conv – setting to False includes only linear layers

	conv_method (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	how to subsample convolutional layers. Default is
	channelwise, which means that the each position of
the filter tensor is considered a datapoint,
effectivly yielding a data matrix of shape
(height*width*batch_size, num_filters)

	supported methods are:
	
	channelwisetreats every depth vector of the tensor as a
	datapoint, effectivly reshaping the data tensor
from shape (batch_size, height, width, channel)
into (batch_size*height*width, channel).

	meanapplies global average pooling on
	each feature map

	maxapplies global max pooling on
	each feature map

	medianapplies global median pooling on
	each feature map

	flattenflattenes the entire feature map to a vector,
	reshaping the data tensor into a data matrix
of shape (batch_size, height*width*channel).
This strategy for dealing with convolutions is
extremly memory intensive and will likely cause
memory and performance problems for any
non toy-problem

	timeseries_method (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	how to subsample timeseries methods. Default
	is last_timestep.

	supported methods are:
	timestepwise : stacks each sample timestep-by-timestep
last_timestep : selects the last timestep’s output

	nosave (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, disables saving artifacts (images), default is False

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – print saturation for every layer during training

	sat_threshold (float [https://docs.python.org/3/library/functions.html#float]) – threshold used to determine the number of
eigendirections belonging to the latent space.
In effect, this is the threshold determining
the the intrinsic dimensionality. Default value
is 0.99 (99% of the explained variance), which
is a compromise between a good and interpretable
approximation. From experience the threshold
should be between 0.97 and 0.9995 for
meaningfull results.

	verbose – Change verbosity level (default is 0)

	device (str [https://docs.python.org/3/library/stdtypes.html#str]) – Device to do the computations on.
Default is cuda:0. Generally it is recommended
to do the computations
on the gpu in order to get maximum performance.
Using the cpu is generally slower but it lets
delve use regular RAM instead of the generally
more limited VRAM of the GPU.
Not having delve run on the same device as the
network causes slight performance decrease due
to copying memory between devices during each
forward pass.
Delve can handle models distributed on multiple
GPUs, however delve itself will always
run on a single device.

	initial_epoch (int [https://docs.python.org/3/library/functions.html#int]) – The initial epoch to start with. Default is 0,
which corresponds to a new run.
If initial_epoch != 0 the writers will
look for save states that they can resume.
If set to zero, all existing states
will be overwritten. If set to a lower epoch
than actually recorded the behavior of the
writers is undefined and may result in crashes,
loss of data or corrupted data.

	interpolation_strategy (str [https://docs.python.org/3/library/stdtypes.html#str]) – Default is None (disabled). If set to a
string key accepted by the
model-argument of
torch.nn.functional.interpolate, the
feature map will be resized to match the
interpolated size. This is useful if
you work with large resolutions and want
to save up on computation time.
is done if the resolution is smaller.

	interpolation_downsampling (int [https://docs.python.org/3/library/functions.html#int]) – Default is 32. The target resolution
if downsampling is enabled.

delve.TorchCovarianceMatrix

	
class delve.TorchCovarianceMatrix(bias: bool [https://docs.python.org/3/library/functions.html#bool] = False, device: str [https://docs.python.org/3/library/stdtypes.html#str] = 'cuda:0', save_data: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Computes covariance matrix of features as described in https://arxiv.org/pdf/2006.08679.pdf:

\begin{eqnarray}
Q(Z_l, Z_l) = \frac{\sum^{B}_{b=0}A_{l,b}^T A_{l,b}}{n} -(\bar{A}_l \bigotimes \bar{A}_l)
\end{eqnarray}
for \(B\) batches of layer output matrix \(A_l\) and \(n\) number of samples.

Note

Method enforces float-64 precision, which may cause numerical instability in some cases.

 _images/DenseNet18_Cifar10_32.png
—— probe accuracy —— saturation ---model test acc.: 87.07%
1.0

-
o

e
o

f
o
<)

Saturation

e
o

o
[$)]
Test Accuracy

_images/VGG16-Cifar10-r32-bs256-e90lsat_epoch_88.png
9-iissep

iauissep
ot-saimea
Le-saimeay
ve-saimea
og-saimea
rzsamesy)
4

vesomes, O

©
oz-saimea; —
L1-s21mpe3)

pT-s2imea)

y: 92.57

oT-sainea)

£-sa1mpeay

VGG16-Cifarl0-r32-bs256-e90 epoch: 88

test_accuracy

€-sainjea)

0-sainjeay

© = o <
o o o o
uoljelnjes

1.0
0.8

_images/VGG16-Cifar10-r32-bs256-e90idim_epoch_88.png
9-iissep

iauissep
ot-saimea
Le-saimeay
ve-saimea
og-saimea

Lz-saumedy
2
[

VGG16-Cifarl0-r32-bs256-e90 epoch: 88

vz-samesy Y
o
oz-saimea}
 T-saumesy
S p1-saimesy
4|
1 orsamesy
21 somesy
31 csomesy
o-saumea)
o o o o o
=1 n S n
~ — =1
AjlleUOISUSWIP-DISULIUI

_images/border_ResNet18_Cifar10_32.png
Receptive Field Size

— T, min —— Probe Accuracy
—— Saturation - ---- model test acc.: 83.8%

100 1

o1
)
1

T
|
(@)

T
©
&)

T
o
o

Layers

Saturation / Probe Acc.

_images/border_ResNet34_Cifar10_32.png
Receptive Field Size

100 1

o1
)
1

— T, min —— Probe Accuracy
—— Saturation ---- model test acc.: 86.17%
_______ __

o 5
Saturation / Probe Acc.

T
o
o

nav.xhtml

 Table of Contents

 		
 Delve: Deep Live Visualization and Evaluation

 		
 Installation

 		
 Installing Delve

 		
 Usage

 		
 Saturation

 		
 Usage

 		
 Academic Gallery

 		
 Example Plots

 		
 Plotting

 		
 Logging

 		
 Reference to All Attributes and Methods

 		
 SaturationTracker

 		
 SaturationTracker

 		
 API Pages

 		
 delve.SaturationTracker

 		
 Bugs and Support

 		
 Bugs

 		
 Community

 		
 Contributing to Delve

 		
 Overview

 		
 Seven Steps for Contributing

 		
 1) Forking the Delve repository using Git

 		
 Getting started with Git

 		
 Forking

 		
 Creating a branch

 		
 2) Creating a development environment

 		
 3) Installing Dependencies

 		
 4) Making a development build

 		
 5) Making changes and writing tests

 		
 Writing tests

 		
 Running the test suite

 		
 6) Updating the Documentation

 		
 7) Submitting a Pull Request

_images/saturation_demo.gif
000,000 003

Tanh - Nene) Classifcation
FEATURES 4+ = 4 HIDDEN LAYERS ouTPUT
" Teu

+ - + - + - e ™

_images/saturation_demo1.gif
000,000 003

Tanh - Nene) Classifcation
FEATURES 4+ = 4 HIDDEN LAYERS ouTPUT
" Teu

+ - + - + - e ™

_images/delve_logo.png

 Skip to content

 Toggle navigation

 Sign up

 		

 Product

 		

 Actions

 Automate any workflow

 		

 Packages

 Host and manage packages

 		

 Security

 Find and fix vulnerabilities

 		

 Codespaces

 Instant dev environments

 		

 Copilot

 Write better code with AI

 		

 Code review

 Manage code changes

 		

 Issues

 Plan and track work

 		

 Discussions

 Collaborate outside of code

 		Explore

 		

 All features

 		

 Documentation

 		

 GitHub Skills

 		

 Blog

 		

 Solutions

 		For

 		

 Enterprise

 		

 Teams

 		

 Startups

 		

 Education

 		By Solution

 		

 CI/CD & Automation

 		

 DevOps

 		

 DevSecOps

 		Case Studies

 		

 Customer Stories

 		

 Resources

 		

 Open Source

 		

 GitHub Sponsors

 Fund open source developers

 		

 The ReadME Project

 GitHub community articles

 		Repositories

 		

 Topics

 		

 Trending

 		

 Collections

 		
 Pricing

		

 [image:]

 In this repository

 All GitHub

 ↵

 Jump to
 ↵

 		
 No suggested jump to results

		

 [image:]

 In this repository

 All GitHub

 ↵

 Jump to
 ↵

		

 [image:]

 In this organization

 All GitHub

 ↵

 Jump to
 ↵

		

 [image:]

 In this repository

 All GitHub

 ↵

 Jump to
 ↵

 Sign in

 Sign up

 {{ message }}

 delve-team

 /

 delve

 Public

 		

Notifications

 		

Fork
 14

 		

 Star
 73

 		

 Code

 		

 Issues
 2

 		

 Pull requests
 0

 		

 Actions

 		

 Projects
 0

 		

 Security

 		

 Insights

 More

 		

 Code

 		

 Issues

 		

 Pull requests

 		

 Actions

 		

 Projects

 		

 Security

 		

 Insights

Permalink

 master

 Switch branches/tags

 Branches
 Tags

 Could not load branches

 Nothing to show

 {{ refName }}
 default

 View all branches

 Could not load tags

 Nothing to show

 {{ refName }}
 default

 View all tags

 Name already in use

 A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?

 Cancel

 Create

 delve/images/delve_logo.png

 Go to file

 		

 Go to file
 T

 		

 Go to line
 L

 		

 		

 Copy path

 		

 Copy permalink

 This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.

 Cannot retrieve contributors at this time

 5.64 KB

 Download

 		

 Open with Desktop

 		

 Download

 		
 Delete file

 [image: delve_logo.png]

 Go

 Footer

 © 2023 GitHub, Inc.

 Footer navigation

 		Terms

 		Privacy

 		Security

 		Status

 		Docs

 		Contact GitHub

 		Pricing

 		API

 		Training

 		Blog

 		About

 You can’t perform that action at this time.

 You signed in with another tab or window. Reload to refresh your session.
 You signed out in another tab or window. Reload to refresh your session.

_images/sphx_glr_extract-saturation_thumb.png

_images/vgg16_resolution_sat.png
—— input size: (32, 32) —— input size: (224, 224) — input size: (1024, 1024)
model test acc.: 84.61% model test acc.: 92.55% model test acc.: 86.77%

—_
o

Saturation
(@»)
ol

o
o

oo o o o’ GOGQ%GOOQQO‘\QXEO‘\QXE,O‘\QXE&‘Q\% o

Layers

_static/broken_example.png

_static/delve_logo.png

_static/minus.png

_static/no_image.png

_static/file.png

_static/saturation_demo.gif
000,000 003

Tanh - Nene) Classifcation
FEATURES 4+ = 4 HIDDEN LAYERS ouTPUT
" Teu

+ - + - + - e ™

_static/plus.png

